

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

Two Security Vulnerabilities in the
Spring Framework’s MVC
BY RYAN BERG AND DINIS CRUZ

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

TABLE OF CONTENTS

Executive Summary ..1
Acknowledgements...2

Section #1: Spring MVC Data Submission to Non-Editable Fields ..3

The Vulnerability ..5
Case Study: Gaining Ownership of Another Account..6
The Exploit ...10
Recommendations...14

Section #2: Spring MVC ModelView Injection ..17

Recommendations...19

ABOUT THE AUTHORS
Ryan Berg is a Co-Founder and Chief Scientist for Ounce Labs. In addition to advancing the state of the art in application
security technologies, Ryan is also a popular speaker, instructor, and author, in the fields of security, risk management, and
secure development processes. He holds patents and has patents pending in multi-language security assessment, kernel-
level security, intermediary security assessment language, and secure remote communication protocols. Prior to Ounce,
Ryan co-founded Qiave Technologies, a pioneer in kernel-level security, which was later sold to WatchGuard Technologies in
October of 2000. In the late 1990s, Ryan also designed and developed the infrastructure for GTE Internetworking/Genuity’s
appliance-based managed firewall and security services.

Dinis Cruz is Director of Advanced Technology for Ounce Labs and a security consultant based in London specializing in
source code security reviews, penetration testing, ASP.NET application security, reverse engineering and security curriculum
development and the creation of multiple .NET tools.

In addition to being a member of the OWASP (Open Web Application Security Project) Board, Cruz also serves as chief
OWASP evangelist and creates and organizes events for the organization, including the OWASP Spring of Code 08. Dinis is a
frequent featured keynote and advanced technical presenter.

Ounce Labs, Inc. is a security solutions company based in Waltham, MA. For more information, please contact us at 781-290-5333.

Doc.#20080715-1.0

Copyright © 2008 by Ounce Labs, Inc. All rights reserved. Ounce Labs is a trademark of Ounce Labs, Inc. in the United States and/or other
countries. All other trademarks and tradenames are the property of their respective owners.

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

TWO SECURITY VULNERABILITIES IN THE SPRING FRAMEWORK’S MVC

BY RYAN BERG AND DINIS CRUZ, OUNCE LABS ADVANCED RESEARCH TEAM

EXECUTIVE SUMMARY

While performing source-code security review engagements, members of the Ounce Labs’ Advanced Research
Team (ART) discovered and exploited the following two vulnerabilities in the commonly used Spring
Framework’s MVC (Model View Controller)1: Spring MVC Data Submission to Non-Editable Fields and
Spring MVC ModelView Injection.
These vulnerabilities allow attackers to subvert the expected application logic and behavior, potentially gaining
control of the application itself, and access to any data, credentials or keys held in the application.
The two vulnerabilities described in this document are not security flaws within the Framework, but are design
issues that if not implemented properly expose business critical applications to malicious attacks. Fortunately,
the right security awareness in the design and testing phase of applications using the Spring MVC can protect
enterprises from exploitation.
This advisory is part of on-going research at Ounce Labs on the security implications of widely-used web
Frameworks and, although these two vulnerabilities relate to the Spring Framework’s MVC, Ounce Labs’ ART
believe that similar issues will be found in similar Frameworks used by enterprise applications, whether built in-
house, provided by 3rd party companies or as open source. Special care must be placed on Frameworks that
abstract complex web activities such as Form Handling or webpage Flow Control.
This document is targeted at:

1. Members of development teams (from system architects to developers)
2. Security Consultants engaged in Application Security assessments (with or without access to Source

Code)
3. Developers of popular web frameworks (in order to avoid implementing similar vulnerabilities).

Spring MVC Data Submission to Non-Editable Fields
This vulnerability is created by the Spring MVC feature of auto-binding HTML form data into pre-defined Java
POJO Classes. For historic and usability reasons, this feature was designed using a default-allow binding
model which means that ALL setters in the targeted POJO classes can be populated with tainted (i.e. malicious)
data. Although Spring MVC’s documentation contains some mentions of the side effects of this default-allow
auto binding feature, the awareness of the Spring MVC development community is very low.
For more details see Section #1

Spring MVC ModelView Injection
This vulnerability is created by Spring MVC’s capability to dynamically resolve Views (for example a JSP) based
on Java Strings. The exploitable scenario occurs when user-controllable data is used to define the next View. In
addition to allowing the bypass of J2EE URL-based authorization controls, due to some extra capabilities of the
Spring MVC View controllers there are scenarios where this vulnerability can be used to remotely download all
files located inside the targeted application’s web root.
For more details see Section #2

1 The Spring Framework is a widely used Open Source project that allows the development of dynamic, robust and
highly scalable Web J2EE applications (see http://www.springframework.org). The project is maintained by the
commercial company SpringSource (http://www.springsource.com) and the Spring Framework projects referenced in
this document are the Spring Framework (http://www.springframework.org/about), Spring Web Flow
(http://www.springframework.org/webflow and Spring Security (http://static.springframework.org/spring-security/site)

 Page 1

http://www.springframework.org/
http://www.springsource.com/
http://www.springframework.org/about
http://www.springframework.org/webflow
http://static.springframework.org/spring-security/site

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

RECOMMENDED ADDITIONS FOR DEVELOPER’S CODING STANDARD GUIDELINES

It is recommended that the following requirements are added to existing coding standards documents (covering
both in-house and out-sourced development projects):

 Use Spring MVC setAllowedFields on all Form Controllers in order to explicitly control which fields can
receive user-supplied data

 When creating or defining Spring MVC Views, only use static strings and NEVER use variables whose
value can be externally controlled

SPRING FRAMEWORK DEVELOPER’S RESPONSE

Respecting the industry practice of responsible disclosure, Ounce Labs ART contacted the Spring Framework
developers (SpringSource) and provided detailed technical information about the issues discovered.
The Spring Framework developers confirmed the vulnerabilities disclosed and proposed the following action
plan:

 Short term:
o Publish the following advisory on springsource.com:

http://www.springsource.com/securityadvisory
o Improve guidance on published documentation on the implications of these vulnerabilities and

fix vulnerable demo application JPetStore
 Medium / Long term:

o Make changes to the default behavior of the Spring MVC in order to make it harder (for
developers) to accidentally create these vulnerabilities

o Add functionality (in additional to setAllowedFields) to prevent exploitation of these
vulnerabilities

OUNCE CUSTOMERS

Existing Ounce Labs customers that need to review applications using Spring MVC are recommended to
contact Ounce’s professional services in order receive detailed information on how to use Ounce’s technology
to detect these vulnerabilities.

TEST APPLICATION

The test application used in this document is based on the demo application jpetstore that is provided with the
latest version of the Spring Framework (which is affected by the Spring MVC Data Submission to Non-
Editable Fields vulnerability)

ACKNOWLEDGEMENTS

Ounce Labs would like to thank Luke Taylor, Keith Donald, Juergen Holler, and the entire SpringSource team
for reviewing this document and providing additional detail available at http://www.springframework.org.

 Page 2

http://www.springsource.com/securityadvisory
http://www.springframework.org/

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

SECTION #1: SPRING MVC DATA SUBMISSION TO NON-EDITABLE FIELDS

The Spring MVC is an implementation of the ModelViewController pattern2:

In Spring MVC what this means is that there is an automatic binding of user’s submitted data into internal POJO
classes (containing the business logic). For example, on the jPetStore application ‘new user form’
(http://127.0.0.1:8080/jpetStore_Spring/shop/newAccount.do

When the user clicks on ‘Submit’, Spring MVC will automatically populate the form field’s values to the
respective server side object:

2 see http://en.wikipedia.org/wiki/Model-view-controller

 Page 3

http://127.0.0.1:8080/jpetStore_Spring/shop/newAccount.do
http://en.wikipedia.org/wiki/Model-view-controller

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

….

The data in the created object of type AccountForm.Account is populated by dynamic invocation of setters, in
this case:

 Page 4

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

This has tremendous advantages for developers, hence, its popularity, since it simplifies and automates
required web application components.

As an example, to add a new field to a form, all the developer needs to do is to:

1) Add a form field to it to the jsp page:

2) add a getter and setter for it in the target class (in this case on Account)

Upon form submission, Spring MVC internals will automatically invoke the respective setter, populating it with
the value submitted in the HTTP Form field accountForm.account.firstNameXXX, and pass the populated object
as the variable command into the implemented onSubmit function:

THE VULNERABILITY

The Spring MVC Data Submission to Non-Editable Fields vulnerability is created by this ‘auto binding’
feature, since (in most cases) not all fields exposed by the mapped POJO class should be editable3.

Since it is possible for an attacker to submit data to ALL fields that exist in the classes used to bind the data
received, exploitable vectors occur when:

1. There is a difference between the fields exposed on the web page (via JSP for example) and the fields
with setters in the backend classes

2. The developers don’t realize that ALL fields from those classes can contain tainted data
3. Manipulation of these extra fields (controllable by the attacker) allows the circumvention of the

application’s business logic

3 Another variation happens when the number of fields available for edition are dependent of the user’s security
privileges (Administrators can edit all, Power Users some, Normal Users only a couple).

 Page 5

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

CASE STUDY: GAINING OWNERSHIP OF ANOTHER ACCOUNT

To see this vulnerability in practice, let’s look at an exploit on the jPetStore application. First create a new
account (in this case ‘Good Alice’):

Click submit, and the account is created and new user is automatically logged in:

 Page 6

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

A quick look at the back end database also confirms the successful creation of this account:

Next, user Alice is going to do some shopping so that there is a history of past purchases:

 Page 7

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

Now, sign-out Alice and create a new user called ‘Evil Eve’:

And note that the ‘User ID’ field is editable.

 Page 8

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

While logged-in as ‘Evil Eve’ go to the ‘My Account’ page:

And note that the ‘User ID’ field is now NOT editable.

The following code snippet shows how this was implemented in the code:

What happens is that the same page ‘EditAccountForm.jsp’, is used for both new account creation and
edit of logged-in user details. The only difference is that in the GUI, for new users the input textbox is used and
for existing users the accountForm.account.username value is shown.

This means that the only change made is a ‘client side data validation’ (or enforcement), which is easily
bypassed using a web proxy.

 Page 9

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

THE EXPLOIT

Before running the exploit let’s confirm what the database looks like (note both Alice and Eve’s accounts):

Now, use a webproxy to intercept the submit request (the example below uses fiddler)

A careful look at Fiddler’s view of the form submitted (logged in as Eve) shows a direct mapping between form
fields and java fields names (in this case the setters):

 Page 10

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

The only transformation occurs is the conversion from account.email into Account’s setEmail() (i.e. add ‘set’
and capitalize the first name)

A closer look at the setters available in the account class, identifies the existence of the setUsername() method:

This is the method used to bind the value provided by the account.username HTTP Form field into the internal
username field (which ultimately will end up in the database).

In the current example where Eve is changing her user details, this field should NOT be editable. Unfortunately,
due to the auto binding of HTML Form data into internal classes, it is possible to successfully submit data into
all available setters.

So in this example in order to submit data to the setUsername() method, all that is needed to do is to add the
following HTML Form field to the form submission data: account.username = {data}

This can be easily inserted using a web proxy such Fiddler to intercept a request:

 Page 11

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

Adding an extra field and letting the request run to completion:

The request will succeed.

Looking at the database confirms that the changes were made (note how Alice’s values where all changed (with
exception of the username field):

Going into MyAccount confirms that the details of Alice were changed:

 Page 12

 Page 13

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

Going into ‘My Orders’ also reconfirms that we are now logged in as Alice (note the details of Alice’s previous
orders):

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

SPRING FRAMEWORK’S RECOMMENDATIONS

The official Spring Framework documentation contains the following recommendation and security alert In the
org.springframework.validation.DataBinder class:
(http://static.springframework.org/spring/docs/2.0.x/api/org/springframework/validation/DataBinder.html):

Binder that allows for setting property values onto a target object, including support for validation and binding
result analysis. The binding process can be customized through specifying allowed fields, required fields,
custom editors, etc.

Note that there are potential security implications in failing to set an array of allowed fields. In the case of
HTTP form POST data for example, malicious clients can attempt to subvert an application by supplying
values for fields or properties that do not exist on the form. In some cases this could lead to illegal data being
set on command objects or their nested objects. For this reason, it is highly recommended to specify the
allowedFields property on the DataBinder.

ADDITIONAL RECOMMENDATIONS

Although the example, was shown using a controller that extends SimpleFormController, this controller
was intended to be used to handle a single form, any controller used to manage different form submission that
modify the same underlying model are also vulnerable to this style of attack.

• SimpleFormController

• MultiActionController

• AbstractWizardFormController

NOTE: If you are using a SimpleFormController to handle requests from multiple form submissions where each
form is manipulating different aspects of the model you are likely to be vulnerable to this type of problem).

The best way to protect your application is to:

A. Only use the SimpleFormController to manage requests from a single form and a single model. If your
controller needs to support multi-part or multiple form submissions of the same underlying model you
should use either the MultiActionController or the AbstractWizardFormController. You should also
make sure that you override the initBinder(…) method of your controller to only allow the fields that are
required to be submitted to be bound to the underlying model. Additional information on this
implementation can be found at: http://www.springsource.com/securityadvisory

public class MyFormController extends SimpleFormController {

 private static final String[] FIELDS = {“fieldA”,”fieldB”};

 protected void initBinder(HttpServletRequest req,

 ServletRequestDataBinder binder)

 {

 binder.setAllowedFields(FIELDS);
 }

}

 Page 14

http://static.springframework.org/spring/docs/2.0.x/api/org/springframework/validation/DataBinder.html
http://www.springsource.com/securityadvisory

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

B. It is better when you are using multiple forms to modify the same underlying model to use either the
MutliActionController or the AbstractWizardFormController, both of this will give you better flexibility in
setting a different set of allowed fields with each form submission.

NOTE: This is a limitation of using the SimpleFormController that only allows you to control a single set of
allowed fields that must be valid for every form that is routed to this controller.

public class MyFormController extends MultiActionContoller {

 private static final String[] ALLOWED_FIELDS_FORM_A = { “fieldA”};

 private static final String[] ALLOWED_FIELDS_FORM_B =
{“fieldA”,”fieldB”};

 public ModelAndView processFormA(HttpServletRequest request,

 HttpServletResponseResponse)

 {

 DataModel model = new DataModel();

 ServletRequestDataBinder binder = new
ServletRequestDataBinder(model);

 binder.setAllowedFields(ALLOWEDC_FIELDS_FORM_A);

 binder.bind(request);

 …

 return new ModelAndView(“view”);

 }

 public ModelAndView processFormB(HttpServletRequest request,

 HttpServletResponseResponse)

 {

 DataModel model = new DataModel();

 ServletRequestDataBinder binder = new
ServletRequestDataBinder(model);

 binder.setAllowedFields(ALLOWED_FIELDS_FORM_B);

 binder.bind(request);

 …

 return new ModelAndView(“view”);

 }

}

public class MyFormController extends AbstractWizardController {

 private static final String[] FIELDS = {“fieldA”,”fieldB”};

 protected void initBinder(PortletRequest req,

 PortletRequestDataBinder binder)

 {

 int pg = getCurrentPage();

 switch(pg) {

 Page 15

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

 case 0:

 binder.setAllowedFields(ALLOWED_FILEDS_FORM_A);

 case 1:

 binder.setAllowedFileds(ALLOWED_FIELDS_FORM_B);

 default:

 binder.setAllowedFields(“”);

 }

 }

}

 Page 16

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

SECTION #2: SPRING MVC MODELVIEW INJECTION

The second vulnerability can allow an attacker to not only bypass business processes, but also, in the worst
case, download the entire application for disassembly and launch more targeted attacks.

This vulnerability is created by the workflow used by Spring MVC to determine which view should be rendered
in response to user’s request.
In order to be exploitable, the application architecture must, either by design or mistake, allow user data (i.e.
controllable by an attacker) to be used as a View name.
Although this is not a normal (nor recommended) pattern to resolve View’s names, the exploitability of is far
greater than expected due to a special feature introduced into a spring MVC application during implementation
of the View (the ability to manipulate the control flow using the keywords redirect: and forward:) .

SPRING MVC MODELVIEW

Spring MVC is build around a front controller implemented as a basic Servlet that dispatches requests to a
custom implementation of a controller (mapped on the web.xml configuration file):

<web-app>
<servlet>
 <servlet-name>MyFrontController</servlet-name>
 <servlet-
class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>2</load-on-startup>
</servlet>
<!—all requests will be dispatched through Spring
<servlet-mapping>
 <servlet-name>MyFrontController</servlet-name>
 <url-pattern>*.*</url-pattern>
 </servlet-mapping>
</web-app>

When a request is submitted to the front controller, the following actions take place

1. WebApplicationContext is searched and bound in the request as an attribute so that it can be
made available throughout the process.

2. The locale is bound to the request for internationalization support.
3. The theme resolver is bound to allow for themed based view (not required)
4. If a multipart resolver is configured the request is inspected and, if necessary, is repackaged as a

MultipartHttpServletRequest.
5. All Handler mappings defined in the Spring configuration files are searched in order to find an

appropriate handler for the request. The handlers are tried in order until an appropriate mapping is
found.

<!— map all requests to a single controller
<bean
class=org.springframework.web.servlet.handler.SimpleUrlHandlerMapping”>
 <property name =”mapping”>
 <props>
 <prop key=”/*”>MyController</prop>
 <props>
 </property>
</bean>

 Page 17

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

6. Any exceptions can be handled by registering an exception resolver (though this is not necessary)
7. The view resolver is the entity that is actually responsible for finding the view that will render the

response.

NOTE: This description is based on a Web MVC implementation (somewhat different than a portlet
implementation but for the sake of this vulnerability the differences do not matter).

Let’s take a look at a simple view resolver and controller to highlight the problem.

<bean id="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass"
value="org.springframework.web.servlet.view.JstlView"/>
 <property name="prefix" value="/WEB-INF/jsp/"/>
 <property name="suffix" value=".jsp"/>
</bean>

This resolver appears to resolve all requests to a jsp page in the WEB-INF/jsp directory. So a request from,
http://my-domain/resource would try and render the /WEB-INF/jsp/resource.jsp view.

The Spring documentation
(http://static.springframework.org/spring/docs/2.0.x/api/org/springframework/web/servlet/view/InternalResource
ViewResolver.html) states:

NOTE: When chaining ViewResolvers, an InternalResourceViewResolver always needs to
be last, as it will attempt to resolve any view name, no matter whether the underlying resource
actually exists.”

Unfortunately there is a very serious problem created by the fact that the when
InternalResourceViewResolver class extends the UrlBasedViewResolver, it adds two extra options
to control the execution flow: redirect: and forward:

EXAMPLE OF VULNERABLE APPLICATION

Consider the following controller:

Class MyController implements Controller {
public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) throws
Exception {
 String page = request.getParameter("page");
 if (page!=null)
 return new ModelAndView(page);
 return new ModelAndView(this.successView, "cart", cart);

}

It would appear based on the configuration that this would try and render the view from /WEB-
INF/jsp/<page>.jsp.

Let’s look at the UrlBasedViewResolver.

protected View createView(String viewName, Locale locale) throws Exception {
// If this resolver is not supposed to handle the given view,
 // return null to pass on to the next resolver in the chain.
 if (!canHandle(viewName, locale)) {

 Page 18

http://my-domain/resource
http://static.springframework.org/spring/docs/2.0.x/api/org/springframework/web/servlet/view/InternalResourceViewResolver.html
http://static.springframework.org/spring/docs/2.0.x/api/org/springframework/web/servlet/view/InternalResourceViewResolver.html

ADVANCED RESEARCH TEAM TECHNICAL ADVISORY

 return null;
 }
 // Check for special "redirect:" prefix.
 if (viewName.startsWith(REDIRECT_URL_PREFIX)) {
 String redirectUrl = viewName.substring(REDIRECT_URL_PREFIX.length());
return new RedirectView(redirectUrl, isRedirectContextRelative(),
isRedirectHttp10Compatible());
 }
 // Check for special "forward:" prefix.
 if (viewName.startsWith(FORWARD_URL_PREFIX)) {
 String forwardUrl = viewName.substring(FORWARD_URL_PREFIX.length());
 return new InternalResourceView(forwardUrl);
 }
 // Else fall back to superclass implementation: calling loadView.
 return super.createView(viewName, locale);
}

This method gets called to create the view. The interesting thing to note is highlighted portion, where if a
special prefix is pre-pended to the view name it will be passed to an internal view resolver. Consequently if a
user makes the request: http://my-domain/forward:/WEB-INF/web.xml the user is given access to resources that
should never be returned to the user (in this case the web.xml file is displayed)

In addition to returning sensitive configuration information, as well as downloading the application source code
and libraries, the attacker could have the ability to invoke any internally available Views.

NOTE: The exploitability will depend on the application’s design, for example, this vulnerability could allow
access to admin interfaces or the bypass of critical business process.

RECOMMENDATIONS

A. Never allow user submitted data to be used to resolve any views. Validation doesn’t offer a whole lot of

value here because an attacker can use valid view names to potentially bypass a business process.
B. This is a perfect example for using Spring WebFlow to control the actual business process flow this will

enforce the correct flow through the application and eliminate an attackers ability to directly manipulate the
business process. Additional information can be found at: http://www.springsource.com/securityadvisory

 Page 19

http://my-domain/forward:/WEB-INF/web.xml
http://www.springsource.com/securityadvisory

